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Abstract

We present a numerical study aimed at assessing the validity of certain approximations, chiefly the fluid and quasi-

neutral ones, generally used in the theoretical and computational study of fusion plasmas. The impact of numerical

artifacts has been minimised by using the very precise weighted essentially non-oscillatory (WENO) method, which can

be applied to both kinetic and fluid simulations. This is the first application of WENO schemes to Eulerian simulations

of Vlasov plasmas. The fluid modelling of plasmas appears adequate even when collisions are negligible, provided

certain relationships hold between the characteristic speed of the phenomenon under consideration and the thermal

velocities of the species which make up the plasma. The breakdown of this behaviour is probably caused by non-linear

Landau damping; it appears linked with filamentation, which suggests that the magnitude of the departure from

Maxwellian equilibrium may not be the one and only measurement of non-fluid behaviour. As for quasi-neutrality, our

study suggests that the generally accepted criteria should be used with great care, according to the degree of neutrality

expected.
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1. Introduction

Collective effects play an important role in low-density, high-temperature plasmas. This is especially true
in fusion plasmas. A full kinetic description needs to solve the Vlasov–Maxwell equations. Even in the

simplified 1D Vlasov–Poisson system, the complexity of this model invites us to study simpler ones, among

which the hydrodynamic or fluid description plays a central role. Both from a theoretical and a compu-

tational point of view, the use of the fluid approach is considerably simpler than the Vlasov one.

Of course, if Landau damping is present, the hydrodynamic model is unable to model the resonant wave-

particle interactions. On the other hand if kinetic effects can be neglected, i.e. the distribution function

remains close to the local thermodynamic equilibrium, fluid equations give a good description of plasma

turbulence with cross fertilisation between plasma physics and fluid mechanics (Kelvin–Helmoltz, con-
vective cells, intermittency, zonal flows, . . .).

But in the real world, the choice between the two models – kinetic and fluid – is not so obvious. This is

particularly true in studying turbulence and anomalous transport in tokamaks. The computation of tur-

bulent thermal diffusivities in fusion plasmas is of prime importance since the energy confinement time is

determined by these transport coefficients. During recent years, ion turbulence in tokamaks has been in-

tensively studied both with fluid (see for instance [1–3]) and kinetic simulations (see [4,5] using particle-in-

cell (PIC) simulations and [6,7] using Vlasov simulations). Although more accurate, the kinetic calculation

of turbulent transport is much more demanding in computer resources than fluid simulations. As already
mentioned, a key issue is the resonant interaction between waves and particles, which has to be accurately

described. These resonant interactions probably play an important role, at least close to the instability

threshold [8]. As a matter of fact, the thermal diffusivity v computed from fluid simulations exhibits an

overestimate as compared to kinetic simulations: vflu ’ 2vkin. Although it is clear that collisionless (col-

lective) plasma phenomena must be described by the fully kinetic Vlasov–Maxwell (or Vlasov–Poisson)

system, the discrepancy between kinetic and fluid models still has to be explained.

To address this point, it is not necessary to study such a complicated system as a tokamak plasma, and

we can go back to much simpler academic models. First of all let us consider a collisionless, one-dimen-
sional electron plasma in a fixed homogeneous neutralising background. It is well known that using the first

three moments of the Vlasov–Poisson system and neglecting the heat flux allows us to recover the Euler–

Poisson equations with the Lagrangian adiabaticity relation d
dt ðpn�3Þ ¼ 0 (p and n being respectively

pressure and electron density). This way of closing the hydrodynamic hierarchy needs physical arguments

that are hard to demonstrate. Moreover a linearised version of the Euler–Poisson equations around an

equilibrium yields the well-known long wavelength Bohm–Gross dispersion relation x2 ¼ x2
p þ 3k2v2th

which can be obtained also from the linearised Vlasov equation in the long wavelength limit (negligible

Landau damping).
On the other hand, the so called water bag model is not an approximation, but rather a subset of the

Vlasov model (see for instance [9,10]). In such a model the electron distribution function fe is assigned a

constant value A inside some region of phase space plane bounded by two curves vþðt; xÞ and v�ðt; xÞ, and
zero elsewhere. Assuming that vþ and v� are single valued functions of x at any time t, it can be easily shown

that the heat flux is exactly zero, giving rigorously the Eulerian adiabatic law o
ot ðpn�3Þ ¼ o

ox ðpn�3Þ ¼ 0.

Thus the water bag being characterised by a special class of initial conditions, is strictly equivalent to the

Vlasov–Poisson system for all wavelengths and all degrees of non-linearity. It is the unique example of an

exact link between the Vlasov and hydrodynamic models, due to the analogy between the adiabatic laws.
Notice that the pressureless gas (which is also described by the Euler–Poisson equations without pressure,

see (39)) is simply a special instance of the water bag model in which the two contours vþðt; xÞ and v�ðt; xÞ
take on the same value.

Now, for any class of initial conditions but the water bag ones, and in the absence of collisions, there is

no mechanism to ensure the relaxation of the distribution function towards some local thermodynamic
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equilibrium, allowing to close the hydrodynamic hierarchy obtained from the successive moments of the

Vlasov equation.

The situation is more complicated for a two-species plasma (electron and mobile ions) such as the al-
ready mentioned tokamak plasma. Turbulence bearing usually low frequency modes, the electron fluid

equations are closed using an isothermal approximation or described by some ‘‘Boltzmannian’’ density

distribution, while the ions are assumed adiabatic; finally Poisson’s equation is replaced by a quasi-

neutrality approximation.

It is the purpose of this paper to compare these models, and check the pertinence of these fluid ap-

proximations with the full kinetic Vlasov description. Numerical codes are nowadays very precise tools to

deal with and provide a reliable basis for numerical experiments with a high degree of accuracy. As already

mentioned, there is no need to deal with too complicated problems of magnetised fusion plasmas involving
3D complex geometries. Since we are interested in basic concepts of fluid versus kinetic description of a

collisionless plasma, 2D or 3D geometries are of no use, but on the contrary may lead to too complex

interpretations. Thus, without loss of generality, we can restrict to 1D two-species plasma and select a

limited number of parameters.

The choice of the numerical schemes is crucial: the method must be accurate enough to make

meaningful comparisons between the Vlasov–Poisson system and its fluid counterpart. This eliminates

the too noisy PIC methods in favour of the ‘‘Vlasovian’’ ones, i.e. those designed to solve the Vlasov

equation as a partial differential one. But we have to cope with the problem of filamentation in velocity
space with its related propagation to large Fourier modes in v. The origin of this problem lies in the

free streaming term of the Vlasov equation. Even with the self consistent field, the whole Vlasov

equation still exhibits small scale oscillations in phase space, e.g. due to the trapping of particle tra-

jectories around the phase velocity of the wave phenomenon under consideration. New reconstruction

methods, namely weighted essentially non-oscillatory (WENO) have been recently introduced [11],

which are among the most precise methods available for conservation laws. To our knowledge this

paper is the first attempt to apply the WENO scheme in phase space to the Vlasov–Poisson system. (In

[12], WENO was used in the velocity space, and a spectral method in the physical space.) This method
can also be applied to the fluid equations, and this will minimise the impact of method-dependent

errors on our comparisons.

Thus, we shall consider the following simplified system as the object of this article. The plasma is totally

ionised, i.e. made of electrons, with charge �e and mass m1, and ions with charge Ze and mass m2. (All

quantities bearing the subscript 1, respectively 2, will be relative to the electrons and the ions respectively.)

It is one-dimensional and periodic: all quantities depend on only one space variable x, with a space period L,
and all the velocities and the electric field are parallel to the x-axis. Global electrical neutrality is satisfied,

i.e. the average electron density over one period is Z times the average ion density. Finally, collisions be-
tween like or unlike particles are neglected, i.e. we observe the plasma for a time small compared to the

collision period, and on a length scale somewhat larger than the Debye length.
2. An overview of the physical models

2.1. The mesoscopic description: two-species Vlasov–Poisson kinetic system

The distribution functions fiðt; x; vÞ; i ¼ 1; 2, associated to electrons and ions satisfy the Vlasov equation

ofi
ot

þ v
ofi
ox

þ liE
ofi
ov

¼ ofi
ot

� v2

2

�
þ li/; fi

�
¼ 0; ð1Þ
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where li denotes the signed charge/mass ratio, viz. l1 ¼ �e=m1, l2 ¼ Ze=m2; and ½�; �� is the Poisson bracket.

They are coupled to the Poisson (or Gauss) equation for the electric field and potential Eðt; xÞ ¼ � o/
ox:

� o2/
ox2

¼ oE
ox

¼ e
e0

Z þ1

�1
Zf2ð � f1Þdv: ð2Þ

The periodicity condition reads:

fiðt; xþ L; vÞ ¼ fiðt; x; vÞ; i ¼ 1; 2; Eðt; xþ LÞ ¼ Eðt; xÞ: ð3Þ

Initial conditions have to be supplied. Without losing too much generality, we can assume them to be

Maxwellian distributed, namely

fið0; x; vÞ ¼ n0i ðxÞMh0i
v
�

� u0i ðxÞ
�
; i ¼ 1; 2; ð4Þ

where

h0i ¼
kBT 0

i

mi
; MhðvÞ ¼

1ffiffiffiffiffiffiffiffi
2ph

p e�v2=2h;

and the density profiles n0i ðxÞ satisfy:

1

L

Z L

0

n01ðxÞdx ¼
Z
L

Z L

0

n02ðxÞdx¼
def

�n; n0i ðxþ LÞ ¼ n0i ðxÞ; i ¼ 1; 2:

The mass conservation property of the Vlasov equation allows global electrical neutrality to be con-

served with time, which causes the electric field to remain periodic in space, and this in turn extends to the

distribution function.

Another important preserved global quantity is the total energy in the system given by

W ðtÞ ¼def
X2
i¼1

mi

Z L

0

Z þ1

�1

jvj2

2
fiðt; x; vÞdvdxþ

e0
2

Z L

0

Eðt; xÞ2 dx ð5Þ

for any tP 0, verifying formally W 0ðtÞ ¼ 0 and then W ðtÞ ¼ W ð0Þ ¼ W 0. Let us finally remark that the two-

species kinetic system has a lot of preserved quantities like any integral of functions of the distribution

functions fi.
In particular it preserves the global ‘‘free energy’’ or relative entropy of the system:

SðtÞ ¼def
X2
i¼1

Z L

0

Z þ1

�1
fiðt; x; vÞ ln fiðt; x; vÞdvdxþ W ðtÞ ð6Þ

for any tP 0, verifying formally S0ðtÞ ¼ 0 and then SðtÞ ¼ Sð0Þ ¼ S0.
2.2. The macroscopic fluid description: two-species Euler–Poisson system

For each species, we introduce the fluid quantities: density, current, kinematic energy density

ni; ji;wif gðt; xÞ ¼
Z þ1

�1
1; v;

jvj2

2

( )
fiðt; x; vÞdv;

and the fluid velocity ui ¼ ji=ni. Then, the kinematic pressure and heat flux are
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piðt; xÞ ¼
Z þ1

�1
vð � uiðt; xÞÞ2fiðt; x; vÞdv;

Kiðt; xÞ ¼
1

2

Z þ1

�1
vð � uiðt; xÞÞ3fiðt; x; vÞdv:

Energy density and pressure are linked by the relation: 2wi ¼ niu2i þ pi; in other words, the so-called
‘‘adiabatic exponent’’ (cf. (20)) is necessarily equal to 3. This stems from the one-dimensional character of

the velocity space. Finally, we define the kinematic temperature as: hi ¼ pi=ni, i.e. kB=mi times the usual

temperature in Kelvin.

The fluid quantities obey the inviscid compressible Euler equations, that is, the first three moments of

Vlasov’s equation (see [13] for details), which read:

oni
ot

þ oji
ox

¼ 0; ð7Þ
oji
ot

þ o

ox
j2i
ni

�
þ pi

�
¼ liniE; ð8Þ
owi

ot
þ o

ox
ðwi

�
þ piÞ

ji
ni
þ Ki

�
¼ lijiE: ð9Þ

In the absence of collisions, there is no mechanism to ensure the relaxation of the distribution functions

towards Maxwellian equilibrium. So, we have to assume some equation of state between the fluid quantities

in order to close the Euler system (7)–(9).

In this article, the use of the fluid approximation will be justified based on the following physical

hypotheses. First, we assume that the thermal velocities of the two species are several orders of

magnitude apart. Then, we suppose that the characteristic speed of the phenomenon under consider-

ation is small with respect to the thermal velocity of the electrons, but large when compared to that of
the ions.

As a consequence, the two species react quite distinctly to a perturbation. During the time scale of the

perturbation, the electrons have more than enough time to thermalise, hence their temperature h1 will

remain constant in space and time, and equal to its initial value h01. On the contrary, the ions will not have

time to exchange any heat with their neighbours, so oxK2 will be negligible with respect to otw2. Summa-

rising, the electrons will be described by the isothermal two-moment system

on1
ot

þ oj1
ox

¼ 0; ð10Þ
oj1
ot

þ o

ox
j21
n1

�
þ p1

�
¼ � e

m1

n1E; ð11Þ

where

p1 ¼ h01n1 ð12Þ

while the ions will obey the adiabatic three-moment system

on2
ot

þ oj2
ox

¼ 0; ð13Þ
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oj2
ot

þ o

ox
j22
n2

�
þ p2

�
¼ Ze

m2

n2E; ð14Þ
ow2

ot
þ o

ox
ðw2

�
þ p2Þ

j2
n2

�
¼ Ze

m2

j2E; ð15Þ

where

p2 ¼ 2w2 �
j22
n2

: ð16Þ

The motion of both species will still be coupled through Poisson’s equation

� o2/
ox2

¼ oE
ox

¼ e
e0

Zn2ð � n1Þ: ð17Þ

The periodicity conditions

n1; j1; n2; j2;w2;Ef gðt; xþ LÞ ¼ n1; j1; n2; j2;w2;Ef gðt; xÞ ð18Þ

as well as the initial conditions

nið0; xÞ ¼ n0i ðxÞ; jið0; xÞ ¼ n0i ðxÞu0i ðxÞ; w2ð0; xÞ ¼
n02ðxÞ
2

u02ðxÞ
2

�
þ kBT 0

2

m2

�
; ð19Þ

are inherited from the kinetic description (3) and (4) and the pressure law (16). The set of Eqs. (10)–(19) will

be referred to as the two-species Euler–Poisson model.

Remark:. A simple, but somewhat lengthy, calculation on the adiabatic three-moment system (13)–(16)

shows that

1

p2

dp2
dt

� 3

n2

dn2
dt

¼ 0; where
d

dt
¼ o

ot
þ u2

o

ox

is the material (or convective) derivative along the ion trajectories. This is integrated as

p2 ¼ An32; ð20Þ

which is often referred to as ‘‘the adiabatic law’’, or ‘‘the polytropic law’’. However, one should realise that

the ‘‘constant’’ A depends a priori on the trajectory and that, in the absence of collisions, no mechanism can

uniformise its values. This is why – following the usual computational approach [11, pp. 399 sqq.] to in-

viscid compressible gas dynamics – we keep a three-moment description of the ions, instead of closing the

fluid hierarchy at the level of j2 and using the pressure law (20).

In fact, a two-moment, two-species system has been studied previously in [14–17]. In these works, ions

and electrons are considered as isothermal species (although some of the results can be generalised for the
polytropic law). As pointed out above, in a collisionless plasma there is no reason either to consider the ions

as isothermal nor to reduce the three-moment description to the two-moment one. This will also be checked

numerically in the test case of ion acoustic waves.
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2.3. Rescaled equations

Given some units of length, speed, and density: �x;�v; �n, the natural units of time, current, energy density,
pressure, and distribution function are set to

�t ¼ �x=�v; �| ¼ �n�v; �w ¼ �p ¼ �n�v2; �f ¼ �n=�v:

Then, the choice of some unit l for the ratio l yields, from the equipartition of energy theorem, the
natural unit of potential and hence that of electric field:

�/ ¼ �v2=�l; �E ¼ �v2= �l�x
� �

:

As the electron motions are the most rapid, they will set the pace of the codes, either kinetic or fluid.

Moreover, in a hot plasma, their fluid velocity will always be small compared to their thermal velocity.

Hence, it looks sensible, from a computational point of view, to set

�l ¼ l1j j ¼ e
m1

and �v ¼ vth1 ¼
ffiffiffiffiffiffiffiffiffi
kBT1
m1

r
:

There remains to choose �x and �n. The periodic character of the system suggests to set

�x ¼ L and �n ¼ 1

L

Z L

0

n01ðxÞdx:

Another possible scaling – relevant in some circumstances – is to set �x ¼ kD1, the electron Debye length.

As far as our problem is concerned, it has several drawbacks: mathematically, it typically makes the domain

of study look very large; physically, it somewhat obscures the quasi-neutral limit; numerically, it is less

related to the computational cost.
2.3.1. Rescaled Vlasov–Poisson model

Keeping the same notations t; x; v and f ;E for the rescaled unknowns and variables, Eqs. (1)–(4) become:

of1
ot

þ v
of1
ox

� E
of1
ov

¼ 0; ð21Þ
of2
ot

þ v
of2
ox

þ cE
of2
ov

¼ 0; ð22Þ
�g2
o2/
ox2

¼ g2
oE
ox

¼
Z þ1

�1
Zf2ð � f1Þdv: ð23Þ
fiðt; xþ 1; vÞ ¼ fiðt; x; vÞ; i ¼ 1; 2; Eðt; xþ 1Þ ¼ Eðt; xÞ: ð24Þ
f1ð0; x; vÞ ¼ n01ðxÞM1 v
�

� u01ðxÞ
�
; f2ð0; x; vÞ ¼

1

Z
n02ðxÞMa v

�
� u02ðxÞ

�
: ð25Þ

The dimensionless parameters c; a; g are defined as

c ¼ l2

l1

����
���� ¼ Zm1

m2

; a ¼ h02
h01

¼ m1T 0
2

m2T 0
1

; g ¼ �v
�x

ffiffiffiffiffiffiffiffiffi
m1e0
e2�n

r
¼ kD1

L
¼ 1

�txp1

; ð26Þ
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where xp1 is the electron plasma pulsation. It will prove convenient to introduce the parameter b satisfying

a ¼ bc; i:e: b ¼ T 0
2

ZT 0
1

: ð27Þ

Physically, the parameter c is known to be quite small: as the protons contribute to the charge of the ion,

but not the neutrons, one has: c6m1=mproton ’ 1=1836. As for b, it can be arbitrary: in laser-plasma in-

teraction in the sub-picosecond regime, the electron temperature may reach very high values as compared

to the ion temperature and the parameter b can be very small; however, the collisions that are inevitable in a

real plasma tend to equalise the temperatures, so we can expect b to be never very large. Therefore, we can
expect a to be small, too.

Finally, the numerical simulation of the plasma by the Vlasov–Poisson model demands that

1. The collective description of the plasma be physically valid on the length scale of the simulation box.

For evident computational reasons, the latter is taken as one space period, hence, g must be small

enough.

2. The effects of collisions can be neglected. A necessary (but not sufficient on long time scales) condition

for this is that the graininess parameter g � 1, where:

g¼def �nk3D1

h i�1

¼ e0kB
e2

	 
�3=2

�n1=2T�3=2
1 : ð28Þ
2.3.2. Rescaled Euler–Poisson model

After straightforward calculations, we get:

on1
ot

þ oj1
ox

¼ 0; ð29Þ
oj1
ot

þ o

ox
j21
n1

�
þ n1

�
¼ �n1E; ð30Þ

i.e.

p1 ¼ n1; ð31Þ
on2
ot

þ oj2
ox

¼ 0; ð32Þ
oj2
ot

þ o

ox
j22
n2

�
þ p2

�
¼ cn2E; ð33Þ
ow2

ot
þ o

ox
ðw2

�
þ p2Þ

j2
n2

�
¼ cj2E; ð34Þ

where

p2 ¼ 2w2 �
j22
n2

: ð35Þ
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�g2
o2/
ox2

¼ g2
oE
ox

¼ Zn2 � n1; ð36Þ
n1; j1; n2; j2;w2;Ef gðt; xþ 1Þ ¼ n1; j1; n2; j2;w2;Ef gðt; xÞ ð37Þ
nið0; xÞ ¼ n0i ðxÞ; jið0; xÞ ¼ n0i ðxÞu0i ðxÞ; w2ð0; xÞ ¼
n02ðxÞ
2

u02ðxÞ
2

h
þ a
i
: ð38Þ
3. The limit regimes

We now examine the asymptotic behaviour of the Vlasov–Poisson and Euler–Poisson models when the

various parameters tend to zero. These derivations are purely formal and we do not investigate the com-

bined effects of several parameters tending to zero as functions of one another.
3.1. The cold ion regime

If the parameter a is zero, the ions are initially monokinetic, or ‘‘cold’’ (in the kinetic language), or
pressureless (in the hydrodynamic language). It is not difficult to prove that they remain so with time,

namely:

• the solution to (22) is f2ðt; x; vÞ ¼ nciðt; xÞd v� jciðt;xÞ
nciðt;xÞ

� �
;

• the solution to (32)–(35) is: fn2; j2;w2gðt; xÞ ¼ fnci; jci;
j2
ci

2nci
gðt; xÞ,

where ðnci; jciÞ solves the pressureless Euler system

onci
ot

þ ojci
ox

¼ 0;
ojci
ot

þ o

ox
j2ci
nci

¼ cnciE; nci; jcif gð0; xÞ ¼ n02ðxÞ 1; u02ðxÞ
� �

: ð39Þ
3.2. The one-species regime

If c is negligible, the ions are infinitely massive, so that they do not react any more to the electric force.

The third term vanishes in (22), and it is easy to check that this equation, with the initial condition (25),
admits the solution

f2ðt; x; vÞ ¼ n02ðx� vtÞMa v
�

� u02ðx� vtÞ
�
: ð40Þ

Similarly, the right-hand sides in (33) and (34) vanish; however, the solution to this simplified problem

generally cannot be written in closed form. As for the electrons, their distribution function is solution to

(21) and (23), where f2 is now a data given by the formula (40). Similarly, their density and current are

solution to (29) and (30) coupled with (36), with n2 given as the solution of a decoupled problem. We will

refer to this situation as the one-species regime.

In the kinetic formulation, n2 is given by

n2ðt; xÞ ¼
Z þ1

�1
f2ðt; x; vÞdv ¼

Z þ1

�1
n02ðx� nÞMa

n� tu02ðx� nÞ
t

	 

dn
t
;

this allows to calculate it explicitly in particular cases. For instance, supposing that u02ðxÞ ¼ U ¼ const, we

use the identity Maðn=tÞ=t ¼ Mat2ðnÞ and we find
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n2ðt; xÞ ¼ n02 � stUMat2
� �

ðxÞ ¼ stUn02 �Mat2
� �

ðxÞ; ð41Þ

where � and s� denote the convolution and translation operators, respectively. In other words, the ion
density undergoes an advection at the speed U , while the diffusion of rapid particles simultaneously blurs

out the discrepancy between dense and less dense regions. Let us finally remark that the density n2 satisfies
the linear diffusion equation:

on2
ot

þ U
on2
ox

¼ at
o2n2
ox2

;

as it can be easily checked by a direct computation. As more particular cases:
• if the ion density is initially constant (n02ðxÞ � Z�1), it will remain so with time,

• if the ions are initially monokinetic (a ¼ 0), they will remain so, and the density profile n02 will simply

propagate at the speed U .
3.3. Quasi-neutrality

When g ! 0, the Eq. (23) or (36) shows that the plasma tends to become neutral, i.e.

n1 ¼ Zn2: ð42Þ

This equation, however, is often too crude to derive any interesting physics. A subtler argument is that

the plasma pulsations xp1 / g�1 and xp2 / c1=2g�1 become infinite (provided c remains finite). The particles

follow instantaneously the electric field, so that their distribution function is at any time in an equilibrium

state described by the Boltzmann factor, hence [18, p. 14]:

ni / e�li/=hi ; ð43Þ

where / is the electric potential.

A quasineutral limit (g ! 0) at the level of the fluid description has been obtained in [15,17] for a two-

species isothermal (or polytropic) 2-moment system. On the contrary, the derivation of an asymptotic

dynamic in the kinetic description seems difficult. It is possible to derive formally a hydrodynamic limit

(generalising [19] to the two-species case) in the case of cold ions and electrons. However, a vanishing

electron temperature cannot represent the physics of totally ionised plasmas – which, by the way, is one

reason for choosing �v ¼ vth1. So, we shall adopt (42) or (43) as operational definitions of quasi-neutrality.
Because of the disparity between the two plasma pulsations, it can happen that electrons be ‘‘more quasi-

neutral’’ than ions, i.e. (43) is better satisfied for i ¼ 1 than i ¼ 2.

This is even necessary to avoid some incoherences. Indeed, we shall see that assuming (43) for both

species is incompatible with the physical hypotheses of periodicity and global neutrality.

For the sake of simplicity, let us assume that we are not dealing with too weak solutions, i.e. that the

densities ni are integrable functions on (0,1), hence locally integrable on R. In the kinetic framework, this is

the case e.g. if the distribution functions fi are initially integrable functions on ð0; 1Þx � Rv: then they will

remain so with time, and ni will be integrable on ð0; 1Þ. Thus, by (23) or (36), E will be continuous, and /
continuously differentiable.

As the potential is at any time solution to a static equation, we forget the t-dependence in the rest of this

section and we denote by 0 the x-derivative. Moreover, we set the additive constant of the potential by

imposing /ð0Þ ¼ 0. Then, (36) with the hypothesis (43) reads:

�g2/00ðxÞ ¼ Zn2ð0Þe�c/ðxÞ=h2ðxÞ � n1ð0Þe/ðxÞ=h1ðxÞ ð44Þ

Let us consider the linear regime with the following assumptions:
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• / � hi; i ¼ 1; 2, i.e., in physical units, the value of the potential energy of a particle is small as compared

to the value of the temperature in energy units,

• the temperatures hi are nearly uniform and equal to their characteristic values �h1 ¼ 1 and �h2 ¼ a.
Then (44) becomes:

�g2/00ðxÞ þ k2/ðxÞ ¼ Zn2ð0Þ � n1ð0Þ ¼ a; ð45Þ

where k2 ¼ Zn2ð0Þ=bþ n1ð0Þ. Finally, / is characterised by the conditions

/ satisfies (45) for all x 2 R, /ð0Þ ¼ 0, / is continuously differentiable and has the period 1,

which are clearly equivalent to

/ satisfies (45) for all x 2 ð0; 1Þ, /ð0Þ ¼ /ð1Þ ¼ 0, /0ð0Þ ¼ /0ð1Þ.
Now, the solution to (45) with the boundary conditions /ð0Þ ¼ /ð1Þ ¼ 0 is

/ðxÞ ¼ a
k2

�
1� ekx=g þ ek=g 1� e�kx=g

� �
1þ ek=g

; ð46Þ

which satisfies:

/0ð0Þ ¼ a
kg

� ek=g � 1

1þ ek=g
¼ �/0ð1Þ:

In other words, there is no periodic function satisfying (45) on the whole of R, unless a ¼ 0, in which case

nothing happens: the potential and the densities are uniform and constant in time. Equivalently, it is not

difficult to check that the densities n1 ¼ ð1þ /Þn1ð0Þ and n2 ¼ ð1� /=bÞn2ð0Þ, with / given by (46), do not
agree with the global neutrality condition on (0,1) unless a ¼ 0.

So far, we have not disproved the existence of a non-trivial periodic solution to (44), i.e. the pos-

sibility that (43) be satisfied for both species in the non-linear regime. But if we start from a neutral

plasma (n1 ¼ n2 everywhere) with uniform temperatures h1 and h2, it should go through a phase of

linear behaviour for the potential like above. During this phase, the condition (43) must break down

for at least one species. According to the plasma pulsation argument, this should happen first for the

ions.

The case where (43) holds for the electrons only is investigated in Appendix A. Unlike the previous
situation, it appears coherent with the physical hypotheses. And, at least in the linear potential regime and

in the kinetic framework, it satisfies

Zn2 � n1 / g2;

which is precisely what (36) says, provided /00ðxÞ remains finite. This confirms that the scaling of Section 2.3
is the relevant one for dealing with the quasi-neutrality issue.
4. The model case: Ion acoustic waves

As explained in Section 1, it is not necessary to use the full Vlasov–Maxwell system and a complicated

geometry for testing the validity of the physical assumptions used in the modelling of real-life problems.

Certain instances of the one-dimensional Vlasov–Poisson system are good candidates for testing the more

general hypotheses made e.g. in the study of turbulence in tokamak plasmas, while being far simpler both

from a mathematical and a computational point of view. There is no need, for instance, to cope with the

burden of Larmor radius effects, and so on.
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As an example of such a physical phenomenon, satisfying the hypotheses of Section 2.2, we selected the

ion acoustic waves [20]. We assume that electrons and ions are described by the systems (10)–(12) and (13)–

(16) respectively, and that (43) holds for i ¼ 1.
Under these circumstances, one shows (see [18, p. 262]) that small perturbations of the ion density admit

the dispersion relation

x2

k2
¼ kB

m2

ZT1
1þ k2k2D1

 
þ 3T2

!
: ð47Þ

As noted above, we simulate only one wavelength, thus choosing k ¼ 2p=L. As g must be small, so is
kkD1 ¼ 2pg. In this case, the waves have a constant ‘‘sound’’ speed

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kB ZT1 þ 3T2ð Þ=m2

p
: ð48Þ

This result is also obtained by using the quasi-neutrality condition (42); so one checks that taking g ! 0

does correspond to making the charge balance more exact. Comparing cs to the thermal velocities of both

species, we find:

cs=vth1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1þ 3bÞ

p
; ð49Þ
cs=vth2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�1ð1þ 3bÞ

q
: ð50Þ

Thus, it is sufficient to suppose both b and c quite small in order to satisfy a posteriori the assumptions of

the hydrodynamic derivation.

In order to undertake a kinetic analysis of these waves based on the two-species Vlasov–Poisson system,

we must take care that the characteristic time of the phenomenon be small as compared to the collision

time. From [18, pp. 172–173], we get the expressions of electron–electron, electron–ion, and ion–ion col-
lision frequencies, which we rewrite as functions of our dimensionless parameters and of the electron

plasma pulsation xp1:

m11 ¼ m12=Z ¼
ffiffiffi
2

p
lnK=12p3=2

� �
gxp1;

m22 ¼ lnK=12p3=2
� �

Zgc1=2b�3=2xp1:

The values of the Coulomb logarithm lnK vary little within the range of natural and laboratory plasmas

[18, p. 170]; we shall take lnK ¼ 18 as a typical (and rather overestimated in our test-cases) value. Assuming

that the formula (48) is still approximately valid, we obtain an estimation of the average number of elec-

tron–electron and ion–ion collisions occurring during one period T ¼ L=cs of the sound wave:

C11 ¼ m11T ¼ 0:38g
Lxp1

vth1

vth1
cs

¼ 0:38gg�1c�1=2ð1þ 3bÞ�1=2
; ð51Þ
C22 ¼ m22T ¼ 0:27Zgg�1b�3=2ð1þ 3bÞ�1=2
: ð52Þ

So, the Vlasov–Poisson analysis of the ion acoustic waves is physically justified provided C12 ¼ ZC11 and

C22 are small. The kinetic treatment [18, p. 425] confirms qualitatively the fluid analysis, yet finds a Landau

damping rate

r ¼
ffiffiffiffiffiffiffiffi
p=8

p
kcs c1=2
h

þ b�3=2e�1=2b
i
:



Table 1

‘‘Confidence rate’’ for the fluid treatment of ion acoustic waves

b�1 n c�1 100 900 1836 3670 5496 1

2 0.011 0.015 0.015 0.016 0.016 0.017

5 0.018 0.024 0.025 0.025 0.026 0.027

10 0.29 0.38 0.39 0.40 0.41 0.43

15 0.59 0.77 0.80 0.83 0.84 0.88

P 23 0.67 0.88 0.91 0.94 0.95 1.0
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The damping factor over one period is

G¼def e�rT ¼ exp

"
�

ffiffiffiffiffi
p3

2

r
c1=2
�

þ b�3=2e�1=2b
�#

:

Though this estimation is rigorously valid only in the b � 1 (and g � 1) limit, it can serve as a ‘‘con-
fidence rate’’ for the fluid modelling: the lower the G, the less appropriate the fluid treatment certainly is.

Table 1 gives diverse values of G.
The values c�1 ¼ 1836, 3670 and 5496 correspond respectively to ordinary hydrogen, deuterium (and

also, approximately, helium 4), and tritium. The value b�1 ¼ 23 is the least integer b such that

exp½�
ffiffiffiffiffiffiffiffiffiffi
p3=2

p
b3=2e�b=2� > 0:995.
5. Numerical implementation

5.1. The method

Our choice of a numerical method was guided by the following requirements. First, the method should

be accurate enough to make meaningful comparisons between the two-species Vlasov–Poisson system and

its fluid, one-species and cold-ion approximations, as well as meaningful measurements on the quasi-

neutrality criteria. Thus, we rejected the too noisy PIC methods for the kinetic simulations, and we were led

to prefer a true ‘‘Vlasovian’’ method, i.e. a numerical scheme designed to solve the Vlasov equation as a
partial differential equation posed in phase space. (See e.g. [21] for a review.) Then, we desired a method

which could also be applied to the fluid equations, in order to lessen the impact of method-dependent errors

on the comparisons.

This led us to choose the WENO flux reconstruction methods [11] (see also [22–24]). They can be applied

to any hyperbolic system of conservation laws; yet both the Vlasov and the Euler equations belong in this

framework. They have the double advantage of being able to deal with shocks (which typically appear in

fluid equations) or steep gradients (which typically appear in Vlasov’s equation, cf. Figs. 10 and 12), while

achieving high-order accuracy in the smooth regions. This makes them among the most precise methods
available for conservation laws.

As the main drawback, they do not guarantee the conservation of any physical invariant other than the

one furnished by the conservation law itself. This is of no importance for the Euler–Poisson model, which

expresses the conservation of all physically interesting invariants: mass, momentum and energy. On the

other hand, a WENO Vlasov–Poisson code cannot enforce the conservation of any moment of fi above the
order 0, and especially that of the total energy W ðtÞ.

Neither do these methods preserve the positivity of the distribution function, or of any positive function.

This, however, is no big hindrance since the negative values that may appear are usually very small in
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absolute value. From a physical point of view, this problem may affect only some phase space regions of

high momentum, where the density is so small that there are no particles to interact with existing high phase

velocity waves.
We chose a fifth-order, flux-splitting, WENO scheme, associated to a third-order total variation di-

minishing (TVD) Runge–Kutta method for the time discretisation. The implementation of the two-species

Vlasov–Poisson system (1)–(4) poses no difficulty, thanks to the one-dimensional character of the unknown

fi, and the to easy determination of the wind direction. The code was based on a Boltzmann–Poisson code

already used in [25,26].

The implementation of the two-species Euler–Poisson model (10)–(19) is much more complex, because of

its non-linearity and of the dimension 2 or 3. In order to achieve the desirable accuracy, it is preferable to

perform local base changes (this is known as characteristic-wise WENO), and Lax–Friedrichs flux splitting
before applying WENO reconstruction, and then to go back to the physical fluxes [11, p. 368]. For the

expressions of the base changes cf. [27]. However, this is not possible for the pressureless Euler system (39):

this system is no longer hyperbolic, so there is no characteristic base. Thus we had to do component-wise

WENO (i.e. WENO applied to the original physical variables) with flux splitting in this case, see [11, p.

365].

Finally, one-species simulations based on the same principles have also been implemented, both in the

kinetic and fluid approaches.
5.2. Cost vs. efficiency analysis

As usual, the coexistence of multiple scales has a high computational cost. Indeed, the time step in an

explicit Vlasov code is given by the formula

Dt ¼ g Rvth1
Nx

L

�
þ e
m1

E1
physðtÞ

Nv

Rvth1

��1

;

where E1
physðtÞ is the supremum of the modulus of the electric field (in physical units) at time t; Nx and Nv are

the respective numbers of mesh points in x and v; R is a constant which controls the extension of the v-space,
and has to be taken large enough to prevent the numerical loss of particles at its ends; and g < 1 is used to

ensure the CFL condition. Hence

Dt ¼ g RNx

�
þ E1

rescðtÞ
Nv

R

��1

�t ’
�t
CN

;

where E1
rescðtÞ is now the supremum of the electric field in rescaled units, N ¼ maxðNx;NvÞ, and C is a

somewhat large dimensionless constant.

On the other hand, the computation time necessary for advancing one time step is approximately

akinNxNv, for some constant akin. So, the order of magnitude of the time taken by the kinetic code to

compute one period is

tkinðTÞ ’ akinNxNv
T

Dt
¼ akinNxNv

CN
�t

L
cs

’ akinCN 3ffiffiffi
c

p : ð53Þ

Moreover, large values of N (N ’ 200) are necessary to obtain a good numerical conservation of

energy, which is mandatory for testing the thermodynamic hypotheses of the fluid derivation (see

Section 6.5), since more than 99% of the total energy of the system is in the form of thermal agitation,

i.e. internal energy. This makes tkinðTÞ quite large even for c ¼ 1=100, i.e. well above its physical range

of values.
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Of course a Euler code does much better, because is considers only 6 unknowns for each point in the

x-mesh, instead of 2Nv þ 1 � 1. For isothermal electrons, the formula for the time step is

Dt ¼ gL
Nx

vth1
�

þ u1physðtÞ
��1

’ g
Nx

�t;

since u1physðtÞ, the supremum of the modulus of the electron fluid velocity (in physical units) at time t, is
always negligible before vth1. The computation time for advancing one time step is now ’ afluNx, for some

constant aflu. So, we find that the time taken by the fluid code to compute one period is roughly equal to

tfluðTÞ ’ afluNx
T

Dt
’ afluN 2

g
ffiffiffi
c

p : ð54Þ

We still have the unpleasant dependence in c�1=2, but the numerator is now in N 2. Typically,

tkinðTÞ=tfluðTÞ ’ 103. This makes the fluid simulation much more affordable for very small values of c, which
precisely should make it more accurate.
6. Numerical tests

6.1. Test cases

The instances of the Vlasov–Poisson and Euler–Poisson problems are specified with the initial values of

density, fluid velocity, and temperature n0i ðxÞ, u0i ðxÞ, T 0
i ; the length of the simulation box L (which is equal to

wavelength of the simulated wave); and the mass m2 and charge number Z of the ions. We tested the

following values:
• The electrons had an initial temperature T 0

1 ¼ 1004 eV and an average density �n ¼ 1016 m�3. Hence their

thermal velocity was vth1 ¼ 4:19� 106 m/s, and the Debye length was kD1 ¼ 743 lm. Moreover, the

graininess parameter was g ¼ 2:44� 10�7. The modelling by the Vlasov–Poisson system is thus excellent

on short time scales.

• The species 2 was a ‘‘light proton’’, with charge þe, whose mass was taken as 100 or 900 times that of the

electron. Indeed, kinetic computations with c ¼ 1=900 were already very heavy, while Table 1 shows that
this value does not deteriorate much the confidence rate with respect to the physical values for the three

hydrogen ions. The initial temperature of the light protons was taken either as T 0
2 ¼ 1 or 10 eV (b ¼ 1=10

or 1/100).

• The length of the simulation box was L ¼ 1 or 5 cm, corresponding to time scales�t ¼ 2:38 or 11.9 ns, and
to g ¼ 7:43� 10�2 or 1:49� 10�2. Hence, the values of the collision-related parameters C12 ¼ C11 and

C22 defined by (51) and (52) were bounded in the worst cases as C12 6 1:9� 10�4 and C22 6 4:4� 10�3.

This fully justifies the modelling of the plasma by the Vlasov–Poisson system over a few periods of

the ion acoustic waves.

• Both species were initially at rest: u01ðxÞ � u02ðxÞ � 0.

• The initial density profiles were n01ðxÞ ¼ n02ðxÞ ¼ �nwð2px=LÞ where wð#Þ ¼def 1þ e cos#exp sin#. The value
of the parameter e was 0.05.

• One-species simulations were performed with the same initial conditions n01; u
0
1; T

0
1 for the electrons as

above. In order to mimic the two-species case, the initial density of the neutralising background was

n02 � n01. Then, this density was taken as

n2ðt; xÞ ¼ �n 1

	
þ e cos

2px
L

exp sin
2px
L

exp

�
� 2p2

L2

kBT 0
1

m1

at2
�


; ð55Þ



Table 2

Values of b, c, g for the different test cases

g¼ 7.43� 10�2 g¼ 1.49� 10�2

b�1 n c�1 100 900 100 900

10 1 3 6 8

100 4 2 5 7
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which is a fairly good approximation of the exact solution (41) for U ¼ 0.

These different test-cases were numbered as shown in Table 2. This numbering will be used in all sub-

sequent figures.

6.2. Testing the one-species limit

We compared the evolution of the electron density computed by the two-species Vlasov–Poisson code

with that obtained by a one-species simulation. The latter was performed by a similar kinetic code; the

parameter a in (55) was taken as 1/1000 (corresponding to the two-species case 1) or 1/90000 (as in case 2).

The results are plotted on Fig. 1. The divergence is hardly less rapid when the ions are heavier (case 2)

than with the lighter ones (case 1); its characteristic time is of order �t ¼ 2:38 ns. The reason for this is

probably the very strong electron Landau damping (a detailed numerical study based on a coupled WENO-
spectral method can be found in [12]) that prevails at this high temperature (100 eV). In the one-species

case, the electron density fluctuations are rapidly damped to their equilibrium values. On the other hand, in

the two-species framework, the electrons are relaxed towards a slowly moving ion density pattern. On a

larger time scale, the electrons appear to follow the motion of the ions: this is the quasi-neutral regime.

6.3. Testing the quasi-neutrality

So we were led to investigate the validity of the quasi-neutrality conditions (42) and (43) for both species.
As the code sets the additive constant of the potential by taking / ¼ 0 at the left extremity of the simulation

box, Eq. (43) is equivalent to
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Fig. 1. Comparison of electron densities computed by one-species and two-species simulations. Left: case 1 (a ¼ 1=1000); right: case 2

(a ¼ 1=90000). Time scale: �t ¼ 2:38 ns.
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niðt; xÞ ¼ niðt; 0Þ exp
�
� li/ðt; xÞ

hiðt; xÞ

�
: ð56Þ

To test (56), we made a semi-logarithmic plot of /=Ti against the relative concentration ni=nið�; 0Þ. (We

refer to this as the Boltzmann test.) The data were collected at seven selected points, equally spaced in the

mesh.

The direct comparison of n1 and n2 gave good results in all cases (see Figs. 2 and 3). The results of

the Boltzmann test were more ambiguous. In the cases 1 and 2 (with the larger value of g) the

electron data were fairly well aligned. For the ions, there is also some grouping, but it cannot corre-

spond to (56), since this equation predicts a negative slope. However, as can be seen from Fig. 3, the

Boltzmann test failed completely in the cases 6 and 7, which intuitively correspond to a better quasi-
neutrality. Nevertheless, as expected, the direct comparison appears much better than in the cases 1

and 2.
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6.4. Testing the cold ion limit

As explained in Section 5.1, we had to use a slightly different numerical method for the cold ion case. We

implemented a two-species Euler–Poisson code with a component-wise WENO scheme; both species were
represented by a two-moment system, i.e. treated as isothermal with a possibly vanishing temperature Ti.

The first task was to check that the component-wise method was not too inaccurate for allowing

meaningful comparisons. To do so, we simulated a system made of isothermal electrons at T1 ¼ 100 eV and

isothermal ions at T2 ¼ 1 eV. This is clearly unphysical, but allows easy comparisons between the char-

acteristic-wise and the component-wise methods. The results were almost undistinguishable on several

periods; in other words, the component-wise method, though less good theoretically, is excellent for smooth

solutions.

Thus we could reliably proceed to the numerical study of the cold ion limit. We simulated a system of
isothermal electrons at T1 ¼ 100 eV and cold ions at T2 ¼ 0 eV by the component-wise code. The parameter
 .1
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c was taken as 1/100 or 1/900, which allowed direct comparisons with the cases 1–4 of the characteristic-

wise WENO simulations. Fig. 4 shows the influence of the ion temperature, hence of the parameter b. The
cold ion limit is defined by a ! 0; when c is fixed, this is equivalent to b ! 0. We remark that adiabatic
simulations at b ¼ 1=100 stand very close to cold ion simulations on at least two periods. The cold ion limit

thus appears as a valid approximation when b � 1.

6.5. Testing the thermodynamic hypotheses

In order to check the thermodynamic hypotheses that founded the fluid derivation, viz. that the ions

were adiabatic and the electrons were isothermal, we calculated the fluid quantities by a kinetic simulation.

Then we performed three types of tests to assess these hypotheses.
First, we recorded the time evolution of the temperatures of both species, at our seven points. Fig. 5

shows this evolution at one of these points. We see that, while the amplitude of the relative variation of T2 is
of order e ¼ 0:05, the amplitude of the electron temperature is much smaller. Thus, the electrons can be

reasonably considered as isothermal for any c6 1=100.
Then, we compared the divergence of the heat flux (i.e. oxKi), with the divergence of the energy-pressure

flux (i.e. oxfðwi þ piÞuig, for i ¼ 1 and 2. If the former is negligible when compared to the latter, the species

under consideration can be seen as adiabatic.
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Fig. 6 shows that this is never the case for the electrons. As for the ions, it seems that they can be

reasonably considered as adiabatic for b ¼ 1=100, but not for b ¼ 1=10: in this case, the two flux diver-

gences are of the same order of magnitude.

The last test was to plot a density–pressure diagram. In logarithmic scale, the pressure as a function of

density should appear as a straight line for an isothermal species, and as a set of parallel straight lines for an

adiabatic one. (Remember that the constant A in the pressure law (20) depends on the trajectory.) Using the
values recorded at all our seven points, we got the results shown on Fig. 7.

These confirm the two previous tests. The electron density and pressure are grouped along a straight line

in all test cases. As for the ions, the parallel structure is rather apparent in the case b ¼ 1=100, but much less

for b ¼ 1=10.
The three previous tests have also been performed for the cases 5–8. All the results were qualitatively

similar.

6.6. Testing the fluid approximation

Then, we compared the results of fluid and kinetic simulations. To do so, we plotted the density and fluid

velocity at one point. For the ions, fluid and kinetic simulations are qualitatively similar. The frequencies
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are of the same order (as can be checked by a Fourier analysis) and the two curves coincide more or less

during the first period. The quality of the fluid approximation seems much better for b ¼ 1=100, and the

fluid simulations remain remarkably precise for several periods (see Fig. 8). Clearly, the main cause of the
divergence of the curves is the Landau damping for both species, ignored by the fluid model. For the same

reason, the divergence in the fluid-kinetic comparison for electrons is faster, so that the fluid approximation

becomes bad in time scales shorter than the period of the wave. We have checked that this is not a nu-

merical artifact, by a refinement study in all variables.

Another interesting test is to compare the distribution function (DF) with the local Maxwellian having

the same first three moments (density, fluid velocity and temperature). So we define the deviation of the DF

as

dfiðt; x; vÞ ¼ fiðt; x; vÞ � niðt; xÞMhiðt;xÞ vð � uiðt; xÞÞ;

and we shall refer to fi itself as the brute DF. We plotted snapshots of f2 and df2, for cases 1 and 2 on Figs.

9–12. The same level set is always drawn in the same colour in all the snapshots within a given figure. Units

are fairly arbitrary, but are the same for f and df : so, one sees that the typical value of df2 is less than one

tenth of f2: the departure fromMaxwellian equilibrium, though small, is not insignificant. Rather than in its

magnitude, the difference between the ‘‘good’’ case 2 – where the fluid approximation appears reasonable –

and the ‘‘bad’’ case 1 – where it is unacceptable – lies in the structure of df2.
One observes the well-known ‘‘filamentation’’ phenomenon. When small enriched or depleted regions

appear, their contours are deformed by the Vlasov dynamic: the ‘‘far side’’ (high velocity in absolute value)

moves faster than the ‘‘near side’’, closer to the middle of the phase-space diagram. This causes those

regions to be stretched thinner and thinner; if the phenomenon intensively repeats itself, steep gradients of f
can appear in the v-direction; then more complex dynamical phenomena may rotate them to any direction.

This occurs especially when particules are trapped and detrapped in the potential wells of the waves, re-

sulting in a folding-stretching of the phase-space contours. One clearly observes that the filamentation is

more important in case 1, and this purely kinetic phenomenon is probably the good criterion of the de-

parture from fluid behaviour.
As for the electrons, their DF appears to be very close to a Maxwellian: jdf1j=f1 6 2%. No clear structure

appears in df1, which looks very noisy. This tends to confirm that the magnitude of the deviation from the

Maxwellian is not the only measurement of the departure from fluid behaviour.

Once more, these comparisons and tests have also been carried out for the cases 5–8, and the conclusions

are similar.
7. Summary and discussion

In this paper, we performed an extensive numerical study of certain approximations which are of general

use both in the theoretical and computational study of challenging problems of plasma physics, such as

turbulence and anomalous transport in tokamak plasmas. Namely, we were interested mainly in the fluid

and quasi-neutral approximations, and secondarily in one-species and zero-temperature limits. To assess

the validity of these approximations as such, they were studied in the context of a simplified model which,

however, contains all of them: the one-dimensional, two-species Vlasov–Poisson system.

It appears that the fluid approximation is adequate even in the absence of collisions (i.e. on a time scale
quite smaller than the collision time), provided the characteristic speed of the phenomenon under con-

sideration is different enough from the thermal velocities of both species. The degree of accuracy agrees

with the ‘‘confidence rate’’ of Table 1, which suggests that the divergence between both models is mainly

caused by non-linear Landau damping. This result is of great importance from a computational point of
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view, because it may justify the use of the much less costly fluid simulations in some cases. But there is also

a physical implication: the magnitude of the deviation from Maxwellian equilibrium may not be the one

and only criterion for judging the departure from fluid behaviour. More complex criteria, involving de-
rivatives of the distribution function and thus measuring the filamentation phenomenon, should probably

be used.

To find the good quasi-neutrality equation has always been the hardship of modellers; and the derivation

of an asymptotic quasi-neutral dynamic seems out of reach under most circumstances. Surprisingly, the

‘‘brute’’ Eq. (42) appears much more exact when one tends to neutrality, than the seemingly more sensible

condition (43). Indeed, Eq. (43) breaks down for the ions, as expected; but also for the electrons when the

parameter g, which measures the degree of neutrality, goes to 0. This seems rather annoying since Eq. (43) is

very widely used. So far, we have no satisfactory explanation for this finding, which has still to be confirmed
by other simulations. Assuming that (43) holds for the electrons only is consistent with the basic physical

features of our model – at least under some extra assumptions that are satisfied in all our test cases. A

numerical artifact is unlikely. The small g simulations have excellent qualitative properties and behave as

expected in all the other tests. Moreover, the overall efficiency of the code does not depend on g. We are in

front of a really challenging modelling problem: it seems that one has to use two different, and incom-

patible, quasi-neutrality equations according to the degree of neutrality expected.

The cold ion approximation – which is really a particular case of fluid approximation – appears fairly

accurate when the thermal velocities of both species are several orders of magnitude apart. But, from a
computational point of view, the lack of hyperbolicity of this model precludes the use of the most accurate

hyperbolic solvers. This could be a drawback if highly irregular (e.g. turbulent) behaviours were expected.

Finally, the one-species model seems highly inaccurate except on the shortest time scales, for instance

that of the electron plasma oscillations.

The assumptions lying beneath these approximations are of thermodynamic nature. Thus, their validity

should not be affected when carrying over to complex, three-dimensional geometries. Similarly, the results

of this study could be used even if new physical phenomena (turbulence, magnetic field) are added to the

model, unless the extra physics demonstrably interferes with those assumptions.
We also hope that these simulations have demonstrated the potentialities of WENO schemes, which had

been already used both for ordinary gas dynamics [27] and for some kinetic problems, such as those arising

in semiconductor physics [25,26]. Plasma physics, both in the kinetic and fluid approaches, is a natural field

of application for these powerful, accurate and flexible methods.
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Appendix A. The Boltzmannian electron regime

We consider a linear potential regime which is a little more general than in Section 3.3, namely:

• / � h1 and h1 ’ 1 (in rescaled units);

• Eq. (43) is satisfied for the electrons; with the previous assumption this gives n1ðxÞ ¼ ð1þ /ðxÞÞn1ð0Þ;
• n2ðxÞ is a given function, endowed with three derivatives in x that are integrable on (0,1).
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The last assumption is essentially technical. It holds e.g. in the kinetic framework, if we suppose that

f2ð0; x; vÞ is thrice differentiable. This property will be conserved with time and carry over to n2. The first

condition is satisfied in all our test cases, see Figs. 2, 3 and 5.
Assuming Z ¼ 1, or redefining n2 as Z times the actual ion density, we find that the potential is solution

to

�g2/00ðxÞ þ k2/ðxÞ ¼ n2ðxÞ � k2; ðA:1Þ

where, this time, k2 ¼ n1ð0Þ. (Here, too, we forget the t-dependence, and we denote by 0 the x-derivative.)
Using the ‘‘variation of constants’’ formula and a bit of trigonometry, we find that the solution to (A.1) can

be written:

/ðxÞ ¼ 1

kg
sinh kð1� xÞ

sinh k

Z x

0

sinh ky n2ðyÞ
��

� k2
�
dy þ sinh kx

sinh k

Z 1

x
sinh kð1� yÞ n2ðyÞ

�
� k2

�
dy
�
;

ðA:2Þ

where k ¼ k=g. The periodicity condition is given by /0ð0Þ ¼ /0ð1Þ; after some calculations, we obtain that

this is equivalent toZ 1

0

wkðyÞ n2ðyÞ
�

� k2
�
dy ¼ 0; where wkðyÞ ¼

coshfkðy � 1
2
Þg

coshðk=2Þ : ðA:3Þ

It is a lengthy, but interesting exercise, to check that the global neutrality condition is also given by (A.3).

Hence, for a given value of g, Eq. (A.1) admits a physically relevant solution iff k is solution to

F ðkÞ ¼def
Z 1

0

wkðyÞn2ðyÞdy ¼ ðkgÞ2
Z 1

0

wkðyÞdy ¼ 2g2k tanh
k
2
: ðA:4Þ

The function F ðkÞ enjoys the following properties:

• As the functions n2 and wk are positive, F ðkÞP 0.

• w0ðxÞ ¼ 1, hence F ð0Þ ¼
R 1

0
n2ðxÞdx ¼ 1, whatever the form of n2.

• For a given x 2 ð0; 1Þ, wkðxÞ is strictly decreasing with k and tends to zero as k ! 1; hence, F ðkÞ is a
strictly decreasing function which goes to zero, by Lebesgue’s theorem.

• Using an integration by parts and a similar argument as above:

F ðkÞ 	 2n2ð0Þ=k when k ! 1: ðA:5Þ

Now, we rewrite (A.4) as

GðkÞ ¼def F ðkÞ
2k tanhðk=2Þ ¼ g2: ðA:6Þ

From the above properties of F , it follows that GðkÞ is a strictly decreasing function, which tends to infinity

as k ! 0 and to 0 as k ! 1. Hence, (A.6) admits a unique solution kðgÞ for any value of g > 0: our model

is consistent. Clearly, kðgÞ is a decreasing function of g, and kðgÞ ! 1 when g ! 0. If g is small enough,
kðgÞ is large enough and we can replace F ðkÞ and tanhðk=2Þ by their equivalent in (A.6):

2n2ð0Þ=k
2k

	 g2; i:e: kðgÞ 	 g�1
ffiffiffiffiffiffiffiffiffiffiffi
n2ð0Þ

p
; and kðgÞ ¼ gkðgÞ 	

ffiffiffiffiffiffiffiffiffiffiffi
n2ð0Þ

p
:

We are now able to derive the asymptotic behaviour of / and n1 when g ! 0. Performing three suc-

cessive integrations by parts in (A.2), we obtain
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kg/ðxÞ ¼ 1

k
n2ðxÞ
�

� k2 � sinh kð1� xÞ
sinh k

n2ð0Þ
�

� k2
�
� sinh kx

sinh k
n2ð1Þ
�

� k2
��

þ 1

k3
n002ðxÞ
�

� sinh kð1� xÞ
sinh k

n002ð0Þ �
sinh kx
sinh k

n002ð1Þ
�

þ 1

k3

�
� sinh kð1� xÞ

sinh k

Z x

0

cosh ky n0002 ðyÞdy þ
sinh kx
sinh k

Z 1

x
cosh kð1� yÞn0002 ðyÞdy

�
:

Let us call RðxÞ the last bracket. We bound it as

jRðxÞj6 sinh kð1� xÞ
sinh k

cosh kx
Z x

0

n0002 ðyÞ
�� ��dy þ sinh kx

sinh k
cosh kð1� xÞ

Z 1

x
n0002 ðyÞ
�� ��dy

6
sinh kð1� xÞ þ kxf g

sinh k

Z 1

0

n0002 ðyÞ
�� ��dy ¼ Oð1Þ:

On the other hand, the terms sinhfkð1� xÞg= sinh k and sinhfkxg= sinh k are exponentially decreasing

when k ! 1 and 0 < x < 1. Finally, we have:

k2/ðxÞ ¼ n2ðxÞ � k2 þOðg2Þ and n1ðxÞ ¼ k2ð1þ /ðxÞÞ ¼ n2ðxÞ þOðg2Þ:
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